Schrödinger Theory of Electrons in Electromagnetic Fields: New Perspectives
نویسندگان
چکیده
The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem). (The time-independent law, a special case, provides a similar description of stationary-state theory). These laws are in terms of “classical” fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, and an internal magnetic field component. The response of the electron is described by the current density field; (b) the scalar potential energy of an electron is the work done in a conservative field. It is thus path-independent. The conservative field is the sum of the internal and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its constituent property-related components known. As the sources of the fields are functionals of the wave function, so are the respective fields, and, therefore, the scalar potential is a known functional of the wave function; (c) as such, the system Hamiltonian is a known functional of the wave function. This reveals the intrinsic self-consistent nature of the Schrödinger equation, thereby providing a path for the determination of the exact wave functions and energies of the system; (d) with the Schrödinger equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new term that explicitly involves the external magnetic field. The new understandings are explicated for the stationary state case by application to two quantum dots in a magnetostatic field, one in a ground state and the other in an excited state. For the time-dependent case, the evolution of the same states of the quantum dots in both a magnetostatic and a time-dependent electric field is described. In each case, the satisfaction of the corresponding “Quantal Newtonian” law is demonstrated.
منابع مشابه
Theory of Gas Ionization by Intense Electromagnetic Fields
The distribution function of the electrons produced in the interaction between an intense electromagnetic wave and a neutral gas is derived and is shown to be nonequilibrium and anisotropic. By assuming that the time scale of gas ionization is much greater than the field period, it is shown that the electron distribution function formed in microwave and optical discharges has sharp anisotropy a...
متن کاملProperties of the Schrödinger Theory of Electrons in Electromagnetic Fields
The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a)...
متن کاملMultiple edges of a quantum Hall system in a strong electric field.
In this article we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localised at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained st...
متن کاملEffective dynamics for Bloch electrons: Peierls substitution and beyond
We reconsider the longstanding problem of an electron moving in a crystal under the influence of weak external electromagnetic fields. More precisely we analyze the dynamics generated by the Schrödinger operator H = 1 2 (−i∇x −A(εx)) 2 + V (x) + φ(εx), where V is a lattice periodic potential and A and φ are external potentials which vary slowly on the scale set by the lattice spacing. We study ...
متن کاملMolecular quantum electrodynamics in the Heisenberg picture: A field theoretic viewpoint
Quantum electrodynamics (QED) is the physical theory that describes the interaction of electrons and photons at a fundamental level. Its characteristic feature is that the radiation field, as well as the system of material particles, obeys the postulates of quantum mechanics. A rigorous non-relativistic formulation of this theory applicable to atoms and molecules has also been developed and app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computation
دوره 5 شماره
صفحات -
تاریخ انتشار 2017